Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Expert Rev Anti Infect Ther ; 20(5): 657-661, 2022 05.
Article in English | MEDLINE | ID: covidwho-1585374

ABSTRACT

INTRODUCTION: : 5-Aminolevulinic acid (5-ALA) is a naturally synthesized amino acid present in most plants as well as animals, and it is routinely consumed by humans. This brief report sought to describe the potential of 5-ALA and sodium-ferrous citrate (5-ALA/SFC) to ameliorate the course of coronavirus disease 2019 (COVID-19). AREAS COVERED: : Studies have shown that 5-ALA is converted to protoporphyrin IX (PPIX), then to heme. Recent studies have demonstrated that PPIX has antiviral effects against several viruses, including Zika virus, dengue virus, and influenza A virus. The anti-inflammatory effects of 5-ALA have also been reported in humans. Preliminary in vitro and clinical studies have shown that the combination of 5-ALA/SFC could reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated insults. The SARS-CoV-2 genome contains guanine-quadruplex sequences, and the administration of 5-ALA/SFC can lead to the generation of porphyrins that have the ability to bind to guanine-quadruplexes and reduce the replication of SARS-CoV-2. Furthermore, 5-ALA is a metabolic precursor of heme, which is a potent inducer of the enzyme heme oxygenase-1, the levels of which are decreased in patients with severe COVID-19. Oral administration of 5-ALA/SFC induced heme oxygenase-1 in the peripheral blood of uninfected healthy individuals. EXPERT OPINION: : Based on the available information, it appears likely that 5-ALA/SFC has therapeutic value in clinically controlling SARS-CoV-2-mediated insults in COVID-19 patients. Multicenter randomized controlled trials are needed for determining the long-term clinical utility of 5-ALA/SFC.


Subject(s)
COVID-19 Drug Treatment , Zika Virus Infection , Zika Virus , Aminolevulinic Acid/pharmacology , Animals , Citric Acid , Ferrous Compounds , Heme , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , SARS-CoV-2 , Sodium
2.
Sci Rep ; 11(1): 21462, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500517

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 (COVID-19). More than 143 million cases of COVID-19 have been reported to date, with the global death rate at 2.13%. Currently, there are no licensed therapeutics for controlling SARS-CoV-2 infection. The antiviral effects of heme oxygenase-1 (HO-1), a cytoprotective enzyme that inhibits the inflammatory response and reduces oxidative stress, have been investigated in several viral infections. To confirm whether HO-1 suppresses SARS-CoV-2 infection, we assessed the antiviral activity of hemin, an effective and safe HO-1 inducer, in SARS-CoV-2 infection. We found that treatment with hemin efficiently suppressed SARS-CoV-2 replication (selectivity index: 249.7012). Besides, the transient expression of HO-1 using an expression vector also suppressed the growth of the virus in cells. Free iron and biliverdin, which are metabolic byproducts of heme catalysis by HO-1, also suppressed the viral infection. Additionally, hemin indirectly increased the expression of interferon-stimulated proteins known to restrict SARS-CoV-2 replication. Overall, the findings suggested that HO-1, induced by hemin, effectively suppressed SARS-CoV-2 in vitro. Therefore, HO-1 could be potential therapeutic candidate for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Heme Oxygenase-1/metabolism , Hemin/therapeutic use , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Cell Survival/drug effects , Chlorocebus aethiops , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Hemin/chemistry , Hemin/pharmacology , Humans , RNA Interference , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Up-Regulation/drug effects , Vero Cells , Virus Replication/drug effects
3.
Arch Virol ; 166(8): 2089-2108, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1209235

ABSTRACT

The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.


Subject(s)
COVID-19/genetics , ABO Blood-Group System/genetics , Angiotensin-Converting Enzyme 2/genetics , Apolipoprotein L1/genetics , Basigin/genetics , COVID-19/epidemiology , COVID-19/therapy , Dipeptidyl Peptidase 4/genetics , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Heme Oxygenase-1/genetics , Humans , Immunity/genetics , Neuropilin-1/genetics , Patient Outcome Assessment , Polymorphism, Genetic , Receptors, Calcitriol/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Vitamin D-Binding Protein/genetics , Vitamin K Epoxide Reductases/genetics
4.
Free Radic Biol Med ; 161: 263-271, 2020 12.
Article in English | MEDLINE | ID: covidwho-872071

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.


Subject(s)
COVID-19/immunology , Fibrinolytic Agents/metabolism , Heme Oxygenase-1/metabolism , Interferon Type I/immunology , SARS-CoV-2/growth & development , Antiviral Agents/metabolism , Disseminated Intravascular Coagulation/prevention & control , Heme/metabolism , Heme Oxygenase-1/genetics , Humans , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
Mol Med ; 26(1): 90, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-801066

ABSTRACT

Hydrogen sulfide (H2S) is a natural defence against the infections from enveloped RNA viruses and is likely involved also in Covid 19. It was already shown to inhibit growth and pathogenic mechanisms of a variety of enveloped RNA viruses and it was now found that circulating H2S is higher in Covid 19 survivors compared to fatal cases. H2S release is triggered by carbon monoxide (CO) from the catabolism of heme by inducible heme oxygenase (HO-1) and heme proteins possess catalytic activity necessary for the H2S signalling by protein persulfidation. Subjects with a long promoter for the HMOX1 gene, coding for HO-1, are predicted for lower efficiency of this mechanism. SARS-cov-2 exerts ability to attack the heme of hemoglobin and other heme-proteins thus hampering both release and signalling of H2S. Lack of H2S-induced persulfidation of the KATP channels of leucocytes causes adhesion and release of the inflammatory cytokines, lung infiltration and systemic endothelial damage with hyper-coagulability. These events largely explain the sex and age distribution, clinical manifestations and co-morbidities of Covid-19. The understanding of this mechanism may be of guidance in re-evaluating the ongoing therapeutic strategies, with special attention to the interaction with mechanical ventilation, paracetamol and chloroquine use, and in the individuation of genetic traits causing increased susceptibility to the disruption of these physiologic processes and to a critical Covid 19. Finally, an array of therapeutic interventions with the potential to clinically modulate the HO-1/CO/H2S axis is already available or under development. These include CO donors and H2S donors and a boost to the endogenous production of H2S is also possible.


Subject(s)
Coronavirus Infections/immunology , Hydrogen Sulfide/metabolism , Pneumonia, Viral/immunology , COVID-19 , Carbon Monoxide/metabolism , Coronavirus Infections/complications , Coronavirus Infections/metabolism , Coronavirus Infections/therapy , Genetic Predisposition to Disease , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , Pneumonia, Viral/therapy , Risk Factors
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: covidwho-742801

ABSTRACT

The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic.


Subject(s)
Coronavirus Infections/metabolism , Heme Oxygenase-1/metabolism , Pneumonia, Viral/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Heme Oxygenase-1/genetics , Humans , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , Viroporin Proteins
7.
Antioxid Redox Signal ; 33(2): 59-65, 2020 07 10.
Article in English | MEDLINE | ID: covidwho-108750

ABSTRACT

Human lungs single-cell RNA sequencing data from healthy donors (elderly and young; GEO accession no. GSE122960) were analyzed to isolate and specifically study gene expression in alveolar type II cells. Colocalization of angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 enables severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) to enter the cells. Expression levels of these genes in the alveolar type II cells of elderly and young patients were comparable and, therefore, do not seem to be responsible for worse outcomes observed in coronavirus disease 2019 (COVID-19) affected elderly. In cells from the elderly, 263 genes were downregulated and 95 upregulated. Superoxide dismutase 3 (SOD3) was identified as the top-ranked gene that was most downregulated in the elderly. Other redox-active genes that were also downregulated in cells from the elderly included activating transcription factor 4 (ATF4) and metallothionein 2A (M2TA). ATF4 is an endoplasmic reticulum stress sensor that defends lungs via induction of heme oxygenase 1. The study of downstream factors known to be induced by ATF4, according to Ingenuity Pathway Analysis™, identified 24 candidates. Twenty-one of these were significantly downregulated in the cells from the elderly. These downregulated candidates were subjected to enrichment using the Reactome Database identifying that in the elderly, the ability to respond to heme deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum stress is significantly compromised. SOD3-based therapeutic strategies have provided beneficial results in treating lung disorders including fibrosis. The findings of this study propose the hypotheses that lung-specific delivery of SOD3/ATF4-related antioxidants will work in synergy with promising antiviral drugs such as remdesivir to further improve COVID-19 outcomes in the elderly.


Subject(s)
Activating Transcription Factor 4/genetics , Coronavirus Infections/genetics , Lung/metabolism , Pneumonia, Viral/genetics , Superoxide Dismutase/genetics , Adult , Aged , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2 , Antioxidants/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Gene Expression Regulation/genetics , Heme Oxygenase-1/genetics , Humans , Lung/pathology , Lung/virology , Male , Metallothionein/genetics , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL